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ABSTRACT

Transient analysis deals with the problem of numerically
determining the poles sl's2' .. associated with the Laplace trans-

form of a given real transient y(t) = av exp~svt) (where
Re sv< 0 for each v), from a knowledge of its samples

y y(k At), k = 0,1,......In practice, the samples Yyl 1 y2, ...
are usually contaminated with noise, and this serves to limit the
effectiveness of the computational schemes of Prony, Bellman, Jain,

Van Blaricum, etc. which have been developed for extracting the

first few s V's. The performance of these algorithms can be greatly
enhanced if the data y0,yl 1,... is first subjected to a suitable
sequence-to-sequence transformation. Any such linear pole

preserving transformation must have the simple form
W k = YOyk + YlYk+1 + Y2yk+2 + ... ' k =0,1,... where

Y(z) = 0 YO- Ylz + Y 2z 2+..is analytic and zero free in the unit

disc Izj < 1. In most cases of interest, y(z) may be chosen so

as to greatly suppress the effects of noise.
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PREPROCESSING TECHNIQUES IN TRANSIENT ANALYSIS

David W. Kammler

ABSTRACT

We consider the problem of finding the poles zI, z2,...,

z n associated with the z- transform of the sequence

y= (yO'Yl'Y2...) of samples

Yk = Y(kT), k = 0,1,2,...

of the transient

n
Y(t) = - avexp(sVt), t > 0

V=l

emitted by a given n-th order linear system. In principle,

exactly the same poles can be extracted from the sequence

u = ry when r is a sequence-to-sequence transformation of

the form r = Y(E) where E is the shift operator and Y(z) is

analytic and zero free on the unit disc Izi < 1 . Such a

preprocessing operator r can be chosen so as to suppress

additive noise or to selectively enhance one or more of the

poles without annihilating the others. Using such prepro-

cessing operators we obtain a common conceptual framework for

all of the previously used schemes for transient analysis

(including those of Prony, Van Blaricum & Mittra, and Jain)

and we provide a theoretical basis for several promising new

algorithms.

!1



1. INTRODUCTION TO TRANSIENT ANALYSIS

Let

n svt

(1) Y(t) = a e , t > o

V=l
denote an n-th order approximation to the transient emitted

by a physical system in response to some initial excitation

cf.[1]. (In the appendix we present a mathematical model for

a damped vibrating string which serves to illustrate the kind

of phenomena we wish to analyze.) We consider the problem

of numerically determining n and the complex frequencies

Sl'... 'sn from a knowledge of the sequence Y=(yOyly2,..)

of uniformly spaced samples

(2) Yk =  Y(kT), k = 0,1,2,...

where T > 0 is the sampling interval. We shall assume that

Y is real valued so that the a.'s and s.'s occur in complex

conjugate pairs, and we assume that Y is nondegenerate in

the sense that the s.1s are distinct and the a.'s are

nonzero. We further assume ti;at the s's all lie in the

1 i left half plane so that Y(t)--> 0 as t -- . By substituting

4
t=kT in (1) we see that the samples have the representation

n

Vk 1i V=l

where
s T

(4) z. e ,n
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with

(5) JzJ < 1, V=l,...,n.

Since s 1,..,sn occur in complex conjugate pairs the same is

true of zl,..',zn so that the coefficients co,cl,...,c of

the corresponding characteristic polynomial

(6) c(z) = c0 + cZ + + c zn  -z1 ). (z-Z),cEco,

are all real valued. We shall assume tLat the sampling

interval T is sufficiently small so that zl,...,z n are

distinct and so that the inversion of (4)

(7) sv = T
-  nz v, V ,...

can be effected unambiguously without undue regard to aliasing.

We shall find it convenient to introduce the shift

operator E which is defined so that

(8) E(yo,yly 2,...) = (yly 2,y3,... )

or equivalently

EYk = Yk+l' k=O,l,2,...,

and we shall let I denote the corresponding identity

operator. We observe that

2 2E(l,z,z ,...) = z(l,z,z ,...)

3



so that the application of the operator E-zl annihilates the

2
power sequence (1,z,z ,..). This being the case, since (3)

expresses y as a linear combination of n such power sequences

corresponding to z 1,..z n we must have

(9) (E-zl)...(E-zn)y = 0.

By using (6) we may rewrite (9) in the form

c(E)y=(coI+clE+...+cEn)y=cOY+cl(Ey)+...+cn(Eny)=O

or equivalently

(10) €jC = 0

where the data matrix
Y"'" Yn

(11) = Y2 ... Yn+1

n T
has the columns y, Ey,..., Eny and where c = (coc 1 ,. ..,Cn

)

Since we have assumed that V, a.Is are nonzero and the z.'s

are distinct, the first n columns of 'I are linearly indepen-

dent, J has rank n, and (apart from a scale factor) the null

vector c is uniquely determined.,

A1 These observations suggest the following approach to the

transient analysis problem. Given the samples

= (yoyly 2,...) we attempt to make some slight over-

estimate of the system order n and form the data matrix (11).

We numerically investigate the null space of and, if

4



necessary, reduce n so as to obtain an essentially unique

null vector c. After effecting the factorization (6) and

using (7) we then obtain the desired sV's. Almost all of

the presently used noniterative schemes for computing the

s.'s from the Yk'S fall within this conceptual framework.

For example, when we use the well known method of Prony,

we ignore all but the first n rows of 1 and after arbi-

trarily setting c n= 1 we solve the resulting system of

linear equations

YO YIl " Yn c0  0

Y1  Y2 "" Yn+l 0

(12) . .

Yn-i Yn - Y2n-i 1 0

to obtain the remaining components of the approximate null

vector c.

Perhaps the most natural approach to finding a null

vector for J (especially when d has been contaminated with

noise) is to determine c so as to minimize the Euclidean

length of Vc subject to some normalization of the Euclidean

length of c, or equivalently, to minimize the Rayleigh

quotient

If ) T T 2 1
(13) c C c 2

(In so doing we avoid changing an intrinsically homogeneous



problem into an inhomogeneous one as in (12) by the

imposition of a constraint c n=I on one of the components of

c.) Any minimizing o for (13) must be an eigenvector

belonging to the smallest eigenvalue of the symmetric
nonnegative semidefinite (n+l) x (n+l) matrix T,

cf.[8,p.266]. In the ideal noise free setting where the

system order n is known, both S and T will have rank n,

the minimum eigenvalue of !TV will be zero, and the corres-

ponding eigenvector c (unique to within a scale factor) will

be the desired null vector of . In practice, we do not

know the system order and we can only approximate the elements

(14) (T = Yi~k Yj+k' i,j, = 0,1,..., n

k=O

due to noise contamination oC the data and to the use of

finite precision arithmetic on our computer so our computed
T
T will not have either a zero eigenvalue or a null vector.

Nevertheless, by using well known numerical mthods [7] we can

effect the eigenvalue decomposition

(1) T T V T+..+X VT
(13) T

,1OV 00 11 11 nn n

where X0 > X,.> > X > 0 are the eigenvalues and

SvoYl, ...,v n a corresponding orthonormal set of eigenvectors

for !I . If we purposely use a value of n which is a bit

too large, we can analyze the distribution of the X k's and

thereby ascertain the correct system order, e.g., when n is

6



correctly chosen we might expect to have n_1 > > X andn-i n

X n 0. Tne corresponding vn is then a good choice for a.

This approach has been successfully developed by VanBlaricum

and his coworkers, [1,9].

As an alternative to the eigenvalue decomposition (15),

we can use a singular value decomposition of e to obtain

the c which minimizes (13). The data matrix 1 can be

represented in the form

(161 a T T + + CnU VT
+"iV , i1 ly1  n nn

where coO  a", > n > 0 are the singular values of ,

where YO, vl,..., vn are orthonormal vectors from Rn+ l , and

where u, u, ... , U n are orthonormal sequences. (Indeed,

vO , vI , ... , vn are again an orthonormal system of eigenvectors

T 1l/2of T as in (15) with ak k k=0,,..., n and

uk=(T vk for each k for which ak 0.) The ok  and Vk

can be computed directly from the elements of the data

matrix J without first formingj T, cf.[2,31. The distri-

bution of the ks can be used in the same way as that of

the 's to help determine the system order, and the right

singular vector vn serves as an approximate null vector c

for

In principle, the singular value decomposition (16)

should result in a somewhat better conditioned estimate of

the approximate null vector c than the eigenvalue decomposi-

tion (15). Assuming an-1 > On) it can be shown that when

7



is replaced by + E in (16) the resu]ting perturlation Ac

which results in the normalized approximate null vector

c = vn satisfies the bound

(17) II 1- [12 < 0F 1! E4 2 + o( E l2 )

C 112  anl - n

whereas when VTj is replaced by !Tj +W in (15) we have

the corresponding bound

(18) " Lc112 I X0 l1,JI2 + o(llJII2)
H C 112 Xn-1 - Xn

with both bounds being sharp. The condition number

(19) =n-i - X 2 2
n rn_ - an

n-l n

associated with the null vector computation based on (15) is

usually many orders of magnitude larger than the corresponding

condition number

(20) xS =  C0
CO n -l '- a n

associated with the null vector computation based on (16).

On the other hand, when using the eigenvalue decomposition

we must store only one copy of (a suitable truncation of)

the data sequence y = (yOyly 2,...) to use in computing the

elements (14) of !T , and this symmetric (n+l)x(n+l)

matrix is then used as the input to a routine which performs

i8



the eigenvalue computations. In contrast, we must assemble

j (which requires n+l times as much storage as y) to use

as the input for a singular value decomposition analysis.

When the system order n is large and when many rows of J

are known and available for use, this additional storage

requirement for the singular value decomposition may very

well prohibit its use.

The above formulation of the transient analysis problem

has been strongly influenced by a recent paper of Henderson

[4] and by Volume I of the technical report [1] of Auton

and Van Blaricum. An unusually complete annotated biblio-

graphy of related papers and technical reports is given in

Volume III of [1].

9 4
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2. PREPROCESSING WITH THE TAIL SUM OPERATOR

Suppose that we are given a transient sequence

Y = (yoy 1 ,y2 ,...) having components (3) with al,..a n

being nonzero and with z ,...,Zn being distinct points

within the unit circle, and that we wish to determine the
I

z. s numerically. Although it is possible to process tne

Yk'S directly as described in the previous section, it is

often advantageous to use the Yk'S to generate an auxiliary

sequence u = (uo, Uu 2 ...) from which we subsequently

extract the z.'s . This procedure is known as preprocessing.

Before giving a more precise definition, we shall consider

a specific example.

We define the tail sum operator S to be the sequence-

to-sequence mapping for which

cc

(21) Syk = E yk+, k=0,l,2,... s

e=0

i.e., to generate the elements of a = Sy we compute

(22) Uk = Yk ' Yk+l + vk+2 + "'" , k=O,l,2,...

directly from the elements of y. Using (21) we see that

szk zk+Z = zk/(l-z)

e=0

so that

2 2S(1,z,z ,...) = (1-z) - . (1,z,z ,...) I

10



i.e., the power sequence (l,z,z 2  is an eigenvector of

S corresponding to the eigenvalue (1-z) -1 for every choice

of IzI < 1. This being the case, if y has the representation

(3) (so that y is a linear combination of n such power

sequences), then u=Sy has the components

n * k
(23) uk = a. z. , k=0,1,2,...

V=l

where

(24) a* =av/(l-zv), v=l,..., n.

We thereby see that the sequence u=Sy has exactly the same

poles Zl ,...,z n as y, so it is possible to extract these

poles from u as described in the previous section. Using

(24) we see that the ratio a*/a is large when z is near 1,

and thus the pole z is more strongly represented in u than

in y when this is the case. Moreover, we might expect the

summation (22) to suppress some of the effects of any noise

which may have contaminated the Yk's. This being the case,

we might reasonably hope to extract slightly more accurate

poles from u than we could obtain directly from y.

Of course, if a single application of S tends to

suppress the noise and enhance the poles which lie near z=l,

the repeated application of this operator might very well be

expected to do an even better job. The application of S to

the sequence Sy gives the sequence S 2y, etc., with each of

11



the sequences y, Sy, S2y,... having exactly the same poles

Zl,.. ,zn. This suggests three different schemes for

computing these poles. First of all, we might select some

fixed p=O,1, 2 ,... and, following our earlier approach,

attempt to find a null vector a for the data matrix

SPo SPY"' SPn

(25) SPy1  SPy2 ... SPYn+l
SPy2  SPy3 ... SPYn+2

(which reduces to (11) wiien we take p=O and SO= I.) Upon

effecting the corresponding factorization (6) we obtain the

z's . The second approach is suggested by the observation

that in the absence of noise the exact null vector c is

orthogonal to the first row of the matrix (25) for each

p=0,1,2, .... We might therefore seek a null vector c for

the matrix

Y O Y l ... Y n '

(26) y y ... Sy n

and again obtain the zV's from the resulting factorization

(6). Finally, by repeatedly applying S to (3) we see that
n

(27) Spy k = -lip, p=O,1,2,..., k=Ol,2,...

V=l

12



and thereby observe that for each fixed k=O,1,2,... the

sequence Yk aSyk' S2Yk" has the associated poles

V = (l-z )- I, V=l,...,n (which lie in tne half plane

Re v > 1/2 when IzV1 < 1 for each v.) This being the case,

if we find a null vector d = (do,dl... Rdn)T for the matrix

YO SYo ... Snyo

Yl SYl ... snyl

(28) Y2  SY2 ... sny2

and effect the corresponding factorization

d + d w + .... + d wn d (w-w ) ... (W-W0 1 n n .1n

we will have wV = (l-z ) or equivalently zV = (w -l)/wv ,

V=l,...,n (after a suitable permutation of the indices.)

This third approach is equivalent to the pencil-of-functions

method of Jain and his coworkers, [5,6].

If y has the exact representation (3) and all compu-

tations are performed without error, these three approaches

all yield the same zV's. In practice, however, the system

order may be infinite (with n of the poles beiog dominant

and the influence of the others being small but nonzero),

the sampled Yk'S may be contaminated with noise, and finite

precision arithmetic is used to carry out the computations.

The accuracy of the computed zV's thus depends on which of

13



the three matrices (25), (26), (28) we use and on which

method we use to determine the approximate null vector.

14
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3. PREPROCESSING OPERATORS

We shall now generalize the results of the previous

section soas to include preprocessing schemes other than

those based on the tail sum operator S. Let

(29) u = r y

be a linear sequence-to-sequence transformation. We may

think of u,y as being (column) vectors with r =[YkZ ] being

a matrix so that

(30) uk =rYk = YkOYO + YklYl + Yk2Y2 '

We would like to impose restrictions on the Yke's which will

insure tnat F is defined on the whole set of rapidly decaying

transient sequences

(31) (yoYlY2 . )T lim sup [yk / < 1 .

(When Yk has the form (3) with a. 0 and Iz.1 < 1 for each

V=1,...,n we find

lir sup lykl 1 /k = max j IZll,...,IZn < 1

so that T includes all of the transient sequences which

might arise from any stable finite order system we might

wish to study.) Moreover, to be useful as a preprocessing

scheme we must insist that r be pole preserving in the sense

that z. is a system pole associated with u = ry if and only

15



if z. is also a system pole associated with y, and this

serves to further restrict the y S. The resulting

sequence-to-sequence mappings are cnaracterized by the

following

THEOREM 1: A necessary and sufficient condition for r

to be a linear pole preserving sequence-to-sequence mapping

of X into is that F have the form

2%

(32) r = y(E) = y + Y1E + Y2E + 

i.e.,

(33) T'yk = Yoyk + Yyk+1 + Y2Yk+ 2 + ... , k=O,l,2,...

where

(34) Y(z) = y0+Y1z + Y2 z +

is a zero free analytic function on the unit disc fzj < 1

Before proving this result, we point out that (32)-(33)

imply that r has the banded upper triangular matrix

representation

YO Yl Y2 Y
0O 1 2 3'

(35) r =

and since the radius of convergence, R, of (34) is given by

16



the Cauchy-Hadamard formula

(36) R 1= lim s.up lyk

the analyticity of Y(z) on IzI < 1 is equivalent to the

requirement

(37) lim sup Yk1 1/k < i

The hypothesis that y(z) be zero free is not easily trans-

lated into a simple condition on the yk'S

To illustrate the theorem, we first note that the

tail sum operator S of (22) has the representation

(38) S = y(E) = I + E + E2 +

where

(39) Y(z) = l+z+z 2 ... =/(l-z)

is clearly analytic and zero free on IzI < 1. Likewise,

the local smoothing scheme

(40) Uk = Yk + Yk+l + + Yk+N-l

which results from the operator

(41) SN  y N(E) 1 + E + E2  + N-i

with

2 N-i (zN)/lz
(42) YN(z) 1 + z + z 2 + z (l-Z )/(l-z)

17
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meets the hypotheses of the theorem. On the other hand, the

weighted smoothing scheme

Uk = Yk + 2Yk+l + 3Yk+2

corresponds to the operator

(43) 1 = y(E) = I + 2E + 3E2

which maps X into a , but since

y(z) = 1 + 2z + 3z
2

has the roots (-1 + ,(-- )/3 which lie in the unit disc, this

map is not always pole-preserving.

We shall now state and prove three lemmas which collec-

tively serve to establish the above theorem. The first

focuses on the banded upper triangular structure (35) of r,

the second on the growth condition (37), and the third on

the requirement that Y(z) be zero free in the unit disc.

LEMMA 1. Let r be a linear operator which maps the

space of transients T into itself. The following are

equivalent:

(i) c(E)r 7= 0 whenever yE Y and c(z) is a

polynomial such that c(E)y = 0, (i.e., if Yk

has the representation (3) for some choice of the

av's and zV's, then uk =r y k must have the repre-

18



sentation (23) for some choice of the aV's

with the ziV s being the same.),

(ii) r has the representation of (32)-(35),

(iii) r commutes with the shift operator E.

Proof. Assuming (i) we see that since

2

(E -*zI) (1,z,z2 ,... )= (0,00,...)

we must also have

2

(E-zI) r (I,z,z,... )= (0,0,0,...)

for each choice of z with Izi < 1 . Using the general

representation (30) for the linear operator r we find

2(E-zI) r (1,z,z 2
,... )

=(Y0 + ) (Y, -Ykl)Zcc
s 1i fo v r20y E ( Y2cw Y le - 1 z follo

thatl

so that the power series

4 CO

,, Y~~kO + E (ykC-Yk-l,Zl)z ,kl2..

must vanish for every choice of z with IzI < 1 .it follows

that

19



YkO = 0, k = 1,2,...

YkZ = Yk-l,Z-1 kt = 1,2,... ,

i.e., that r has the representation (35) or equivalently

(32) so that (i) implies (ii).

When F= y(E) has the representation of (32)-(33) we

clearly have

rEy k  rYk+l = YoYk+l+YlYk+2+y2yk+3+...=EFYk k=O,1,...

for each y E 3 so that (ii) implies (iii). Moreover, if

r commutes with E, then r also commutes with the polynomial

c(E) in E so that

c(E) r y = r c(E)y = r o = 0

whenever c(E) y = 0, i.e., (iii) implies (i ).

LEMMA 2. Let r be an operator having the representation

of (32) - (33). In order that r map 3' into T it is both

necessary and sufficient that (37) hold (or equivalently,

that (34) be analytic on the disc IzJ < 1.)

Proof. Assume first that r maps J into T. The series

2(34) which represents the first component of r (l,z,z ,. .. )

must then converge whenever (1,z,z2 ,... ) E T, i.e.,

whenever Izj < 1 . Thus (34) is analytic on the unit disc

so that the Cauchy-Hadamard formula (36) must produce a

radius of convergence R > 1, and (37) holds.
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Conversely, assume that (37) holds and that y EY is

given so that

(44) r sup lyk l / k <

Since (44) holds, there exist constants A > 0, 0 < LI < 1

such that

(45) 'Yk' _< A Ck k=O,l,2,.

and since (37) also holds there exist constants B > 0,

0 < 0 < C- such that

(46) lYkI < B k, k=0,l,2,...

Using (45) - (46) and the fact that 0 < oL < 1 we see that

the series (33) which is used for the k-th component of

ry is majorized by

IrYkL=IYOYk+YlYk+Y 2Yk+2+

< B O . Aak+B 1 • Aak+l+BO2 . A k+2+

ABc' / (i-a),

and is thus convergent, k=:0,1.2,.... Thus ry is well

defined, and

lim supI rYk la supAB < 1

so that r yET. 0
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NOTE. A slight extension of the above argument shows

that the operator of (32) - (33) will map

R = : lim supykI R

into itself provided that

lim sup IYk/ l/R,

i.e., provided y(z) is analytic on the disc IzI < R,

0 < R < = . The case R=I is covered by the lemma.

When y(z) is analytic on the unit disc and Izi < 1 we

have
2 2

y(E) ( ,z,z ,. . ) y(z) ( ,z,z ,... ) ,

and we thereby see that y(E) will arnhilate the power

sequence associated with the pole z=z 0 if z0 is a root of

y(z). More generally, su.pose that. y has the representation

(47) Yk = k az k
, k=O,l,2,...

V=l

where

ICO

(48) l Ia < C

and where

(49) IzVI < R < 1 for each v=l,2,...

We then find
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im sup k 1l1 /k < lir sup 1/k

1< kr Eu{R l ai 1/k
V=1

< li sup R k  cc 1a.1 l /

V=l

=R< 1

so that y E T Moreover, when y(z) is analytic on the

unit disc we have

Y(E )yk= 2: Y- ~ avz% y(z )avzk ,k=0,l,2,...,
Z=0 v=1 V=l

and we thereby conclude that each pole zV associated with

y will also be a pole of u = y(E)y provided that y(z) has

no zeros in the unit disc.

The above arguments show that when y(z) is analytic

and zero free on the unit disc, then Y(E) is a pole pre-

serving mapping of the set of sequences y of the form (47)-

(49) into itself. Although such transients are the ones

most likely to be met in practice, for the sake of com-

pleteness we shall extend the argument so as to include

the somewhat larger class J. In so doing, we shall find
A' I

it convenient to use the notation

y(z) = YO + ylz + Y2 z +

for the generating function associated with a gixen sequence
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y = (yo,yly 2 ,... ), with

Y(z-l) = YO + Yl z - + Y2z 2 +

being the corresponding z - transform. Of course, when y

has the representation (47) - (49) w'e find

E~z = 1: ~az z - :a/(zz)

k=O v=l V=l

so that zl,Z 2,... are the poles of y(z- 1 ). More generally,

we shall say that the map r is pole preserving on

provided that for every choice of y E 7 the z - transform

u(z- ) of u =ry has exactly the same poles as the z-transform

y(z-1 ) of y. The relationship between these poles is made

precise in the following

LEMMA 3. Let y, y be sequences with

(50) lim suPlyk -/k R < 1, lim suplyk 1 / k  1

and let u = Y(E) y, V = y(E)Y , i.e.,

Uk=YOyk+YlYk+l+Y2Yk+2+..., k=O,l,2,...

,3

k=Yok+Ylyk+l+Y2yk+2+ k=O,l,2,...

* .Then the generating functions v(z), y(z) are analytic for

IzI < 1, the z-transforms y(z-), u(z - ) are analytic for

IzI > R, and the identity

u(z- ) y(z).y(z- ) - v(z) + v(O)
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holds in the annulus R < Izi < 1 and thus in the common

domain of analyticity of these four functions. In parti-

cular, when Y is zero free in the unit disc, the poles of

u(z- I ) (which must lie in the disc JzJ R) must coincide

with the poles of y(z- ).

Proof. By using the Cauchy-Hadamard formula in

conjunction with (50) and the note following Lemma 2 we

infer that y(z), u(z) are analytic for Izi < 1/R and that

Y(z), v(z) are analytic for Izi < 1. For z in the annulus

R < IzI < 1 we then have

1()YZ k ccY(z).y(z)-1)v(O)= YZyZ -+ YkYk

k=O e=o k=O

= Y k Y z L C + Y k Y 1 4

k>& e>k

cc CO cc cc

= ( Y,'vye)zV+ ( Ykyk+v) z
V=O Z=O V=O k=O

cc cc
= E " z + E UZ z
'V=0 V=O

4, = v(Z) + u(z ) • g
.!*

Taken together, these three lemmas give the previously

stated theorem which provides a simple characterization for

the pole preserving mappings we would like to use in a

preprocessing scheme. The discussion of section 2 can now
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be extended at once to the case where the tail sum operator

(38) is replaced by any operator r = Y(E) for which Y(z) is

analytic and zero free on the unit disc.
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4. NOISE SUPPRESSION

Let a 0 and z be given with jzj < 1, and let

(51) k =az k + Ck , k=Ol,2,...

4 where C0 ,Cie 2,... are independent random variables with

common mean

< Ck > = 0, k=O,l,2,...

and common variance

~2 - 2

< 2k > 2 k=0,1,2,...
k-

Let

r y(E) = y0 +YEIY 2E 2+ ...

be a preprocessing operator for which

(52) y2 iYo12 + 2 2

is finite, and let v = rw so that

kk
(53) vk = ay(z)z k + 6k, k=O,l,2,..

where

"{(54) k =y(/E k =Y 0 -+Y 1Ek+l+ Y2 Ck+ 2 +..., k=0,1,2,

r is a random variable with mean
00o ccI (55) <6 k> =< : y LCk+i >  F Y] < Ck+,&> 0 , l. --0,1,2!,...
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and variance

()0 CO

(56) <16 k1>< Y e>= YCk+ek+I X Y <Ck+ >
Z, =0 &, =0

- y 1Y2 02=Y22 k=O,l,2,...
e=O

The processed noise 603 61, 629... is correlated with

(57) <6k6k+p>= p Ck+t ck+p+p
e, p=0

=( p YO+p+1 1 p+2 2+ k,p-O,l,2,...

We would like to develop some quantitative measure of

the tendency of the preprocessing scheme to suppress the

noise. We shall use lazk1 2 as a measure of the signal

present in the k-th component of w with <E2 > = beiig

a corresponding measure of the noise. Analogously,

jay(z)zk 2 gives a measure of the signal in the k-th

component of v = rw with <16k 12> = Y2 being the

corresponding measure of the noise. The preprocessing
,,1

scheme r thus improves the k-th component signal-to-noise

ratio by the factor

"la y(z)z 1 /(yu ) l~)2

lazk1 2 / 0
2  = z/

Since this ratio is independent of k, we see that
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(58) g(z) = iy(z)1 2 /y2 = y0 +yIz+y 2 z 2 + ... 12

IYo 12,1 1 i12+1 2 12 +...

provides us with a quantitative measure of the tendancy of

r to enhance the signal-to-noise ratio for a power

sequence based on the pole z . When g(z) > 1, the noise

is suppressed, and we refer to the set

(59) 0L = 1z E C : Iz < I and g(z) > I

as the region of pole amplification associated with

r = Y(E).

Suppose now that

n k
(60) wk F az + ek, k=0,1:2,...

v=1

where agO and Izvj < 1 for v=l,..., n, where z1,.. n

are distinct, and where eO,C3 2, ... are again independent
2

random variables with zero mean and common variance a

If we compute
n

k(61) vk = y(E)wk = avy(zv)z, + 6 , k=0,1.,2,...
V=1

(with 60,61,62,... again given by (54) ) we will expect to
.21

r enhance the pole z, relative to the noise provided that
z V V

zlies within the region of amplification OL Y with the

degree of enhancement depending on the size of g(zv). In

practice, the poles z, ... , z are unknorn. but we often
n
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have some a priori knowledge of the portion of the unit

disc in which they are most likely to be found. In such

situations we might reasonably select a preprocessing

scheme which is specifically designed for signals of the

type we expect to process, i.e., we choose r = y(E) so as

to make g(z) as large as possible in the region of the

unit circle where we expect to find zl,. , zn . An upper

bound on the possible size of g(z) is provided by

THEOREM 2. Let the operator r = y(E) satisfy (32) -

(34), (37) with (52) being finite and let g(z) be the

corresponding signal-to-noise amplification factor (58).

Then

(62) g(zo ) 0 /(l-zo12 ), Izol < 1

with equality holding if and only if

(63) y(z) = a/(l-o0Z), IzI < 1

wnere a is a nonzero constant so that y(z) has a simple

pole at the point of inversion z = 1/20 of z0 relative to

the unit circle and

(64) rYk = (Yk zO'yk+l+z ), k=O,l,2,..

Proof. Using Cauchy's inequality we find
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(65) IY()1 2 = I Y zk12

k=O

-< Z : I'k 1  1 I k l2

k=O k=O

2/(l-1z1 2)

with equality holding if and only if y is a scalar multiple
-2

of the power sequence (l,7,z ,... ). In conjunction with

(58) this gives (62) - (64). 0

The bound (62) provides a natural limit to the signal-

to-noise amplification we can achieve tinrough the use of

a preprocessing scheme. 'When the sn;ml ]ing interval T is

chosen so large that the pole z. lies deep within the unit
2 3

circle, i.e., z v z 0, the successive powers z. ,z ,...

decay so rapidly that substantial noise suppression is

impossible and we find

g(z_ ) < 1/(l-lzIz12) 1

On the other hand, if T as so small tha-. z, lies near the

rim of the unit circle, i.e., 1z0j < 1 but JzJI l, then

the maximum of

g(z ) = ]/(l- Iz V!2

will be large and a suitable preprocessing scheme can

achieve a substantial suppression of the rioase, cf. Fir.1.
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Suppose now that we have some a priori knowledge t~iat

the poles z1 ,..., zn which we seek all lie in some subset

(a of the unit disc, e.g., if the samplinginterval T is

small we expect to find z1 ,..., z in a tight cluster near
n

z=l so we might take CL to be the lens shaped set

(66) a =1z E C Izl < 1 and Iz-lI < P1

obtained by intersecting the unit disc with the disc of

radius p which is centered at z=l. Once a. is chosen, we
would like to determine a corresponding preprocessing

operator r = y(E) which is optimal in the sense that the

minimum value taken by g(z) as z ranges over a. (i.e., the

smallest signal-to-noise amplification at any pole location

we might possibly encounter) is as large as possible. Wnen

C=1Z, the optimal operator r is given by (63) - (64).

In more realistic situatic-ns such as (66), tnere is no

known procedure for constructing an optimal . Nevertheless,

we can develop good if not best preprocessors for certain

natural choices of and we shall now proceed to show how

this is done.

Suppose first that CL is given by (66) with P being small.

When Y(z) is given by (39) the contour lines of IY(z) 12 are

circles centered at z=l with Iy(z)when 0 < z-ll< .

We might thus expect the tail sum operator S = y(E) of (38)

to be an ideal choice. Unfortunately, the corresponding
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Y of (52) is not finite when y(z) is given by (39), so we

are forced to consider related approximations.

One very natural approximation is obtained by simply

truncating the infinite series (39) so as to obtain

(42) with N being a positive integer. The corresponding

preprocessing scheme u = y(E)y is then the local averaging

procedure of (40), and the signal-to-noise enhancement

factor is given by

(67) (z)= 1l+z+ ... +zN-l 2/N =ll-ZNI2 /(Il-zl2N)

By using Cauchy's inequality we see that this operator is

optimal in the sense that it maximizes

g(1) = y0+ lY 1 "Z+ +V"X-1i z l j

I o12+1YI 12+1
y+ 1 +y 

1
\ 

2 2 2

as Y(z) ranges over the set of all (nonzero) polynomials

having degree less than N. If we let

2
Ck = exp(i . 27k/N), k=l,2 .. , N-l, (i -I)

denote the N-th roots of unity other than z~l, we may write

(67) in the form.*1

:.' g~(z) l z-c I ... z N l 2/

and tiereby conclude that the contour lines of g(z) coincide

with the equipotentials of the two dimensional field wnich
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results when unit charges are placed at z '2''

in the plane. This helps us visualize the region of

amplification when N is small, cf. Fig. 2. For large N

we neglect zN in (67) to see that the region of amplifi-

cation is essentially the lens shaped set (66) which results

when we take P = Nl/2 and that g(z) increases from approx-

imately 1 to its maximum value N as the distance from z to

1 decreases from N-I/2 to 0. In this way we see that a

large signal-to-noise amplification is possible only when

N is large in which case the corresponding region of pole

amplification is small. Thus N should be chosen in

conjunction with the sampling interval T, i.e., when T is

small the ,I's are tighilly cluster-ed near z=l and a large

value of N is appropriate, cf. Fig. 1 and Fig. 3

A second natural approximation to (39) is obtained by

slightly shifting the pole z=l of y to the nearby point

z = R > 1 so as to make

(68) y(z) = I + z/R + z 2/R 2 + .. (l-z/R)- 1

In this case u = y(E)y is given by,

2(69) uk =Yk + Yk+l/R + Yk+2 /R +

and

(70) g(z) (R2-1)/Iz-R1 2

The contour lines of g(z) are circles centered at z=R
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with g(z) = K on the circle wihere

1z-R = [(R'-l)/K] 1/ .

In particular, the maximum signal-to-noise enhancement is

g(l) = (R+I)/(R-l) z 2/(R-l)

and the region of amplificat-ion is that portion of the unit

disc Izj < 1 which lies within the circle

Iz-RI = (R2 _1)1/2

Again we observe a fundamental trade off between the size

of the region of amplification and the maximum possible g,

cf. Fig. 4.
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5. CONSTRUCTING NOISE SUPPRESSING PREPROCESSING OPERATORS

In many cases of practical importance we encounter a

system which exhibits various modes of oscillation with

frequencies which are more or less integral multiples of

some fundamental frequency and with all of these modes

being similarly damped (cf. Appendix 1), i.e., the sv s

of (1) are more or less iniformly spaced along some line

Re s = -. in the left half plane and the corresponding z.js

of (4) are more or less uniformly spaced around the circle

IzJ = exp(-.T) < 1 To aid us in the numerical extraction

of the first few z 's we would like to use a preprocessing

scheme which is optimal on some corresponding sector

(71) .= jz=re i o : p < r < l,- < e < E

of some annulus of the unit circle with the parameters

p and e (0 < P < 1 and 0 < e < n) being determined by the

damping coefficient a, the fundamental frequency, the

sampling interval, and the number of poles we are trying

to find. Tne preprocessing schemes of (40) and (69) (which

are designed for the region (66) ) tend to enhance the

lowest modes but damp out any others. We must thus devise

a preprocessing scheme r = y(E) for a region of the form(71).

We now describe one way in wnich this can be done.

We first observe that the function
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(72) '*(z) R c io RB
z2-2Rz cose +R (z-Re )(z-Re - )

is analytic inside the circle IzI = R on which its two

conjugate poles z = R exp(+ i6) are found. For IzI < R

and 0 < 6 < r we may write

y*(z) _ sin e i6e-iS

2i sine e-(z/R)e ei - (R) i-i6e - i}

1 ei  c (e ie z/R)k _-e- i a C0e -iGz/R)k ,
2i sine k=O k=O

and after a bit of simplification this yields the series

representation

(in2 5 z sin 3E 2(73) y*(z) + ; -- .+
sine R sine R

for (72).

To obtain our desired preprocessing operator we shall

now select a number p such R,, 6. pairs with R3 > I and

0 < 6. < T, and then foxin the p.roduct of the corresponding
3

terms (72), i.e., we take
2

74)y(z) R 23 2jl z 2_2R.zcosG. R 2 = Yo+Y1Z+Y2z +""

3 ) .3

From (73) - (74) we see that y(z) has the alternative

representation
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[2

sin28, sin36 zi(75) y(z) = I)f + - ,] z_ +
j=l sin 8. R. sin 6" R +

so that if we define

sin26I z sin3 1  z2

sin 1 R 1  sin 0 WI2

and successively compute
2

W (4-1) sin28 z sin3% z2

Y (z) = y (z). 1+ s 8 . +sin 6 1 R i sin 0 R:

for 4=2,3,..., p the resulting Y (z) will coincide with

(75) and thus (74). We may thus numerically obtain the

coefficients yOlyY 2 ,... of (74) by using the recursion

scheme

(1)_ sin(k+1)8, 1
- sin 8, k k=O,1,2,...R1

1

(76)
W= k (e-1) sin(j+1) 8 , 1
k= Z k-j s • h~oi,2,...,

j=O 1 R = 2,3,. ..,p

4 with

1i (77) Yk Y p ) kO ,

Once yOYiY 2,... are known, we use the corresp.onding

operator
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2I

r = + Y1E + Y2E + "'"

for our preprocessing scheme, i.e., we take

uk = YOYk + YlYk+l + Y2Yk+2 + ...

From (74) we see that y(z) will be analytic on the disc

IzI < R when

R = min IR,..., R p >1.

By using the Cauchy-Hadamard formula (36) we then see that

there are constants C > 0 , 0 < q < 1 such that the

coefficients yO, yIy 2,... we compute in (79)-(80) will

satisfy the bound

1YIJ < C qk k=O,l,2,..

We thereby infer that the sum

00 12  < c c k12 = C2/( 2 )

ly IYI< = Cq I C(-q)k=O k=O

is finite so that the corresponding g(z) of (58) is well

defined. Our goal is to determine the pole location

parameters R.,8., j=l,..., p which result in a g(z) which

is uniformly large on all of 0. in the sense that

min Ig(z) :z E 0.

is as large as possible. Since g(z) is the modulus of an
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analytic function which is zero free on 0.. , this is

equivalent to maximizing the minimum value taken by g(z)

as z ranges over the boundary of 0.

Using a digital computer in an interactive mode

(where it is possible to perturb the pole location parameters

R., e. and immediately see the effect on the contour lines

of g(z) we have been able to design good if not best

preprocessing operators r = y(E) for the region (71), cf.

Fig. 5. More work is needed in order to systematize this

procedure, however.

, '1
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6. ALTERNATIVE METHODS FOR COMPUTING THE NULL VECTOR

At the heart of transient analysis lies the problem

of extracting a suitable null vector c = (cocl,..., cn)

for the data matrix & of (11). As we have seen, c can

be obtained alternatively as a null vector of certain

related matrices such as (25), (26) or, more generally,

as a null vector of the corresponding matrices which result

when the tail sum operator S is replaced by some other

preprocessing operator r chosen for its noise suppressing

properties. We shall now describe a general procedure of

this type in the hopes of obtaining a more robust scheme

for computing c and thereby for computing zl,..., Z n .

Indeed, suppose that we are given the transient

sequence y (yoyly 2 ,... ) and the preprocessing

operators r. = yi(E), i=O,l,..., m. We shall numerically

generate the sequences riy, i=0,1,..., m and then

assemble the matrix

royo 0  OYl .OYn

(78) ,J = 3'~o flY2 . . yn

- :1 mO nl n

Using a singular value decomposition of or an eigenvalue

decomposition of .Tk as described in section 1 we shall

compute a null vector c = (co, cl,..., cn) fort and then
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take z zn to be the roots which result from the

corresponding factorization (6). Of course, tnis scheme

will be successful only if the operators are chosen in

such a manner thatb has the same null space as the data

matrix _ . This imposes certain constraints on the

operators '0, F'' "' Pm which we shall now explore in

some detail.

Let Yo(z), yl(z),..., ym(z) be analytic on the unit

disc Izi < 1 . We shall say that these functions satisfy

the Haar condition provided that no linear combination

(79) y,(z) = b0 Y0 (z) + blYI(z) + ... + bm Ym(Z)

of these functions has more than m zeros in jzj < 1 unless

bo, bl, ..., bm all vanish. After illustrating this

concept with several examples we shall show that this is

exactly the property which is needed in order to insure

that)i and j share the same null space.

Example 1. The functions

Yi(z) = zi , m

satisfy the Haar condition on the unit disc s2ince (79)
reduces to the polynomial

y,(z) = bO + bz + ... + bm 
zm

which has at most m zeros unless b b = b 0.
0 m

In this case
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I1

Fiy. Eiyj = Yi+j

so that~j is the matrix which results when all but the

first m+l rows of J are deleted.

Example 2. When y(z) is analytic and zero free on

the unit disc the functions

(80) Yi(z) = zi  y(z) , i=Ol,..., m

satisfy the Haar condition there since (79) reduces to the

product

Y*(z) = Y(z) • [b0 + b1z + ... + b mzm

which has at most m zeros unless b ob0 ... b = 0. In0 V m

this case

PiYj = E'y(E)yj = Y(E)yi+ j

so tnat is obtained by generalizing (25) to the case

where SP is replaced by y(E).

Example 3. Again let y(z) be analytic on the unit

disc and assume that y(z) is also one-to-one, i.e., that

Y(z) =Y(z') only when z =z' .If

(81) iz) = y(z)i m

then (79) reduces to the polynomial

y,(z) = b0 +b y(z) + b2 Y(z)
2  

. , bY(z)m

43



of degree m in Y(z). Since y(z) is one-to-one, y.(z) will

have at most m zeros unless b0 = b 1 = ... bm = 0, and

so the Haar condition is satisfied once again. In this case

PrYj = Y(E)iyj

so that)j is obtained by generalizing (26) to the case

where S is* replaced by y(E).

Example 4. Let C OP ''' Cm be distinct complex

numbers with Jij < 1 for each i, and let

(82) yi(z) = i/(i- i z) , i=Ol,..., m

We may express the corresponding expression (79) in the form

Y*(z) = b 0/(l-Zoz) + ... + bm/(O-k mZ)

= d0 + dIz + ... + dzm

(lqZz)(-l IZ)... (1_ mZ)

with d., d1 ,..., dm depending linearly on bo,bl,..., bm -

Clearly Y*(z) has at most m zeros unless d0 =d I .dm = 0

in which case b=b=... =b =0 also, so the y(z)s satisfy

the Haar condition on the unit disc. Using Theorem 2 we

a, see that the operator

-22
il. = y. (E) = I + iE + i2E +

provides the maximum possible improvement in the signal-

to-noise ratio for a pole at z=Ci, and thus such a pole will

be strongly represented in the i-th row of)1 , i=0,l,..., M.
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Using this/ to determine the null vector c may be preferable

to using (25), (26), or the generalization of Examples 2, 3

above when the system poles are well separated and it is

difficult or impossible to find a single operator r which

has a region of amplification containing all of these poles.

Example 5. Again let C0 , C'' m be distinct

complex numbers withkcil < I for each i and let

Yi(z) = T, i=O,,..., m

be the Lagrange interpolating polynomials of degree m which

are based on the m+l points C0 . . m so that

Yi(C = if i=j 0,1,..., m
!0 if izj .

Since Yo(z), yl(z), ..., ym(z) are linearly independent

polynomials of degree m, the Haar condition is satisfied.

The application of the operator i = Yi(E) to a given

sequence y = (yo,yl,... ) can be effected by successively

applying the m operators E - jl, j i , and then

suitably scaling the resulting sequence.

We note that in the special case where y has the

representation (3), where m=n-l, and where we take

=zl , l=Z2 ,..., Zn, we find that the elements of

2 are given by
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n

Thus/2 is a row scaled version of the Vandermonde matrix

based on z,..... z
n

THEOREM 3. Let r I = Yi(E) where yi(z) is analytic for

Izi < 1, i=O,l,..., m and assume that Yo(Z), Yl (Z),.... Ym(z)

satisfy the Haar condition on tne unit disc. Let

y = (yoyly 2 ,... ) be a transient sequence having the

representation (3) with a AO and Iz I < I for each nl,... ,

with z,. .. ,z being distinct, and with n < m+l. Then
c =(cO,c1 ,..., cn)T is a null vector of the matrix 3d ofn

(78) if and only if c is also a null vector of the data

matrix of (11).

Proof. Using (3) we see that for any choice of

c OP *, cn we have

nn

(83) c OAo+cl il+ . +cn-in=(c 0 +CIE+ .+c n En)Y(E) Zavzv
V=l kO

n
_- , c0 CIZ,) . + z \jn . z ).

V=l

Now if c is a null vector of , the factorization (6) must

hold so

So)0 io+cli l+... n = 0, i=O,l,..., m

and thus c is also a null vector of)J . Conversely, if c
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is a null vector of)j the left side of (83) vanishes for

each i=O,1,..., m and therefore

n
(84) a V(C0 +CIzV+...+Cn zvn)[b0 Y0 (zV)+b 1 Y (zV)+...+bmYm(z V)=O

V=l

for every choice of b, bl,..., bm . Since y0 (z),y 1 (z),. ..

Ym(z) satisfy the Haar condition, we can choose the b.'s
m 1

so as to make (79) interpolate any given m+l points, and

in particular (since m > n-l) we can choose these coefficients

so as to make

(85) b0 Y0 (z )+blY 1 (zV)+...+bmYm(zV)

= a (c0 +c ZV+...+c z n), v=l,.... n

Upon substituting (85) into (84) we find

n
Sla (c +C1z+...+Cn z n)12 = 0

V=1

so that

coyi+clyi+l+... +c v.

n

v 1

i.e., c is a null vector of d .

The ideas leading to the construction of (28) lead to

the somewhat more general result which contains Theorem 3

as a special case.
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THEOREM 4. Let P.= y.(E) where yi(z) is analytic for

Iz[ < 1 , i=0,l,..., m and assume that Y (z), Yl(z),

y(z) satisfy the Haar condition on the unit disc. Let

A. = 6-(E) where 6j(z) is analytic for Izi < 1, j=O,1,...n

and assume that 60 (z), 61 (z), ... , 6n(z) also satisfy the

Haar condition on the unit disc. Let y be a transient

sequence having the representation (3) with av 0 and

JzVI < 1 for v=1,...,n , with z,..., Zn being distinct,

and with n < m+l. Then d=(do,d1 ,..., dn)T is a null

vector of the (m+l) x (n+l) matrix

ro 0 Y0  oFY0 1 yoAnYo

-IyAoyo r 1AlO . . . 1AnYO

(86) Th-

ImA0YO rmAlY 0 . . . rmAnY

if and only if the corresponding characteristic function

(87) q(z) d 0 6 0 (z) + d 161 (z) + .. + dn 6n(z)

L6 vanishes at zl,. zn and is elsewhere nonzero for Izi < 1.

Proof. Using Lhe representation (3) we see that

T n

(88) bTVd= EaV[b0 Y0 (zV)+blYl(zV)+...+bm m(z,)]

v=1

[d06 0 (zV)+d 161 (z v 
)+ ."+dn 6 n (zV)]
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for every choice of bT=(bob,.., b) and dT=
- o'b ... bm and(d 0,d1, .. Od)

If d is chosen so that (87) has z,. .. , zn as roots, then

the left side of (88) must vanish for every choice of b

(and in particular for the choice b =Mfd), and we conclude

that d is a null vector of .

Conversely, suppose that d O is a null vector of Yn

so that the right hand side of (88) vanishes for each

choice of b. Since yo(Z), yl(z),..., ym(z) satisfy the

Haar condition and n < m+l it is possible to choose b so

that

boY(z)+b 1 y (z)+...+b 
Y (z)

=a,[do60 (z)+d1 61 (z)+...+d 6()]

when v=l,..., n. It then follows that

n
Elav[d0 60 (zV)+d 161 (zv )+...+dn6 n(zV)] 12 0

v=l

and thus (87) must vanish at zl, .. , zn. Moreover, since

60 (z), 6(z),..., 6n(z) also satisfy the Haar condition, the

characteristic function (87) has no other zeros in the

unit disc. D

Example 6. Let

Yi(z) = zi, i=O,1,..., m

and let
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6.(z) Y(z) j , j = o,1,..., n

where Y(z) is analytic and one-to-one for Izi < 1 . As

noted in Examples 1,3 above the yi(z)'s and 6W(z)'s satisfy

the Haar condition on the unit disc. If we set r= y(E)

we may write

r' 1 = Y 1(E)=E, i=0,l,..., m

A. 1 3 j(E) = rJ, j=OPl,., n

so that

n

( 89) r Y r T

n
Ym rY m . . . Ym

We then conclude that d (do, dl,..-, dn) is a null vector

of III if and only if y(z1 ),..., y(Zn) are the roots of the

polynomial d"" + d w d n d , and since y is one-to-one

the z.s are uniquely determined from 4. We observe that

* (28) is the specialization of (89) to the case where

Y(z) = I/(l-z) as used in Jain's analysis.

Example 7. Let

Y,(Z) z1, i=0,l,. .. , m
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and let 60 (z), 61 (z),..., 6n(z) be the Chebyshev polynomials

which may be defined and computed by means of the three

term recursion

60 (z) = 1

(90) 61 (z) = z

6 (z) = 2z6j 1 (z) - 6j_2(z), j=2 ,3 ,..., n

Since 6.(z) is a polynomial of exact degree j, the Haar

condition is clearly satisfied. By using (90) we see that

it is possible to numerically generate the sequences

Ajy = 6j(E)y , j=0,1,..., n

when y is given by successively computing

60Yi = y' i=O,l,2,..

A lyi = Yi+l' i=0,1,2,...

Ajyi = 2A jlyi+1 - Aj-2Yi , i=0,1,2,..., j=2,3,..., n.

When y has the representation (3) and m > n-1, zl,...,z n

will be the roots of the characteristic polynomial (87)

(which is now parametrized using the Chebyshev polynomials)

if and only if d = (do,dl,..., dn) is a null vector of the

matrix

Ay 0  Ay 0  . Y

- y1  AIY l  . . AnYl

Ao0Y M lYm AnYm

51



7. THE PROBLEM OF EXTRANEOUS ROOTS

If in the process of numerically analyzing a given

transient y = (yoyly 2... ) of the form (3) we overestimate

the system order n, i.e., we carry out the calculations with

n replaced by some larger integer m=n+r, we obtain a

characteristic polynomial

(91) d(z) = d0 + d1z + ... + dmzm, dmO

of degree m > n. The following theorem provides several

equivalent characterizations of d(z) and shows that

Zl,..., zn are to be found among its m roots.

THEOREM 5. Let y = (yopyly 2 ... ) nave the repre-

sentation (3) with a1 ,..., an being nonzero and with zl, ...

Zn being distinct. Let co, c1,..., C be the coefficients

of the characteristic polynomial c(z) of (6) naving

Tz z as its roots. Let d = (dodl,. ..., d )T withz """' n 0'm

m=n+r and r > 0, and let d(z) be the corresponding

polynomial ( 9 1). Then the following are equivalent:

(i) d is a (right) null vector for the data matrix

YO Y. ..

(92) = Y3Y2 . " Ym+l

(ii) d(E) y = 0,
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(iii) d(zv) = 0 for each v=n,...,

(iv) d(z) has the factorization

d(z) = (b0 + blz+ ... + brzr) c(z)

for some choice of the coefficients b0 ,bl,.. . br ,

(v) dT lies in the row space of the (r+l) x (m+l) matrix

c 0c 1 ... cn
co0 c 1 . c n

(93) C= . .

c ... c n

i.e.,

(94) dT bT • C

for some choice of bT = (bo, bl,..., br).

Proof. From the identity

d(E)y = doy + dlEy + ... + dmEmy =m d

we see that (i) and (ii) are equivalent. Next, since the
2

power sequences (),z,, ,... ), = 1,..., n are linearly

independent, and since

n k n ]z%)k
d(E)yk = d(E) az = [ad(zV))] , k=0,1,2,...

v=l v=l

we see that (ii) holds if and only if avd(zv)= 0 for each
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v = 1,..., n which is equivalent to (iii) and thus to (iv)

since the ag's are nonzero. Finally, by equating the

coefficients of like powers of z in the identity

do+dlz+. +dzm = (bo+bZ+..+brzr)(c +Cz+...+C nz
0 1 . m ( 0-i-1 rn

= b0 c(z) + bIzc(z)+ + br

we see that (iv) is equivalent to (v). D

NOTE. Since the conditions (iii), (iv), and (v) above

do not depend upon any particular choice of y, these

equivalent conditions imply that (i) and (ii) must both

hold for every possible nondegenerate choice of y having

the form (3) with the same z.15.

There are several ways which can be used to numerically

generate a family of vectors

(95) .T = (di, dil,..., dim), i=0,l,..., r

of the form characterized in Theorem 5. We have already

observed that if y is a nondegenerate transient sequence

of the form (3) and we perform a singular value decom-

position of the data matrix m with m = n+r, then r+l

of the singular values will be zero and the corresponding

right singular vectors will be null vectors of 1m and

thus serve as the d.'s . In some cases, it is convenient

to observe a number of transient sequences yOY 1,.. Yr
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which result from different initial excitations of the same

underlying physical system. We can then numerically

generate a null vector di for the data matrix Vm of ( 92)

constructed using the i-th transient sequence yi,

i=0,l,..., r. The same procedure can be used to generate

the d i 's when only one nondegenerate transient y is known

provided that we first generate suitable auxiliary

sequences Yi = riy, i=O,l,..., r from y by applying

preprocessing operators r0, I'','' r" Indeed, in

principle, we can map any given nondegenerate transient

y having component (3) into an arbitrary transient u

having components

SV 'k

(for the same underlying system) by using any preprocessing

operator r y(E) constructed from a function Y (z) which

is analytic on izi < I and which interpolates the points

y(zv) av*/a. , V 1,..., n

We would like to have some numerical procedure for
4

obtaining the system poles z ..., z from such a collection
l"' zn

of vectors (95). In principle, we could simply factor

each of the polynomials

m96) di(z) = dio + d ilz + ... + d. z r"55lim
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and choose as z1 ,..., z the roots which are common to all
Zn

of them (assuming that the d.'s have been suitably1

restricted so as to rule out the possibility of an extraneous

zero held in common by each of the polynomials (9 6) .) In

practice, however, the roots are subject to slight pertur-

bations due to noise, computer roundoff, etc., and instead

of finding n roots which are held in common by the poly-

nomials ( 96), we obtain n clusters of roots (near zl,...,

Zn) which must be suitably averaged. For this reason, we

would like to have some way to process the vectors

dO, dl, '... dr so as to obtain directly a good estimate

of the coefficients c = (co, cl,..., cn) of the character-

istic polynomial (6) having z,,..., as roots. One very

nice scheme for doing this has been published recently by

Henderson [4], and we shall now expand upon his work.

Suppose then that we have been given a collection

(95) with z1,. .. zn being common roots of each of the

corresponding polynomials ( 96). By using Theorem 5-v on

a row-by-row basis we see that the matrix

d0 0 d01 ... d
~Om

d d ... d

(97) D = "

d d d
ro rl ... rm

(having do , dlT,..**. d T as rows) can be factored in tne form
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98) D = B C

where B is an (r+l)x (r+l)square matrix

bOO0 bo 01 * bOr

b10  b 11  . bIr

(99) B=

b b b
rO rl • rr

(having rows which correspond to the polynomial factors

of Theorem 5-iv) and where C is the (r+l) x (m+l) matrix

( 93). Our goal is to extract the parameters cocl,.. ., cn

of C directly from the matrix D.

Henderson's scheme for finding the c.'s begins withi

the use of Gaussian elimination with partial pivoting to

systematically zero out the elements of the matrix D having

indices i, j with i > j, i.e., those elements whieh lie

below the principle or left diagonal drawn through d00 ,

dll, ... . This process replaces D by the matrix LPD where

P is obtained by suitably permuting tne rows of tne

(r+l) x (r+l) identity matrix and where L is an (r+l) x

(r+l) lower triangular matrix having l's along its diagonal,

cf. [8, Chapter 1]. The application of P serves to permute

the rows of D and the subsequent application of L then serves

to carry out the elementary row operations which introduce

the desired zero structure. Henderson's scheme then
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continues by using additional row operations to zero out

those elements of LPD having indices i, j with j > i+m-r,

i.e., those elements which lie above the right diagonal

drawn up through drm , dr_l,m_,. In this way the

matrix LPD is replaced by the matrix ULPD where U is an

(r+l) x (r+l) upper triangular matrix having l's along its

diagonal. The remaining matrix is then a row scaled

version of C, i.e.,

(100) ULPD = SC

where

(101) S = 1 j

The i-th row of ULPD thus contains sic 0 , Sci~',... sic

in columns j= i, i+l,..., i+n, respectively, so after a

suitable normalization (or averaging process cf. [4,

p. 986]) co, c,..., cn are obtained. Henderson has shown

that this procedure will always work when D has full rank.

A slightly more general (necessary and sufficient) condition

for the success of this scheme is given in

THEOREM 6. Let the matrix D of ( 97) have rank

r+l-p where 0 < p < r , and assume that ,D has the factori-

zation ( 93) with B as in ( 99) and with C as in ( 93) with

Cn O Then there exist (r+l) x (r+l) matrices P,L,U,S with
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P being a permutation matrix, with L being a lower trian-

gular matrix with unit diagonal, with U being an upper

triangular matrix with unit diagonal, and with S being a

diagonal matrix such that (100) holds if and only if

exactly p columns of B vanish identically.

Proof: Suppose first that D, C, P, L, U, S are

related as in (100). By using (98) in (100) we see that

(ULPB - S) C = 0

and since the last r+l columns of C are linearly independent

this implies that

(102) ULPB = S

By hypothesis, the matrices U, L, P are nonsingular so by

using ( 98) and (102) we see that D, B and S must have

exactly the same rank r+l-p and that B,S have the same

null space. In particular, exactly p of the diagonal

elements si of S vanish, the corresponding p columns of

B must vanish, and (since the rank of B is r+l-p) no other

columns of B can vanish.

Conversely, assume that exactly p columns of B vanish

(with r+l-p being the rank of both D and B ). By using

elementary row operations we can reduce B to an upper

triangular matrix having exactly p zeros along the principle

diagonal, i.e., we can find P,L such that LPB is an upper
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triangular matrix with exactly p zero elements along the

diagonal. Since each zero column of B is also a zero

column of (LP) • B, the p columns of LPB which contain the

p zero pivots must vanish. This being the case, elementary

row operations can be used to reduce LPB to a diagonal

matrix, i.e., we can find U,S such that (102) holds. Upon

multiplying (102) on the right by C and using ( 98) we

then obtain (100). 0

NOTE: When D satisfies the condition.s of the theorem

the matrices LPD and ULPD = SC will be obtained naturally

during the two stage elimination process. Indeed, suppose

that D can be factored in the form ( 98) and that c0 0.

(If c 0 = 0 we see from (103) and ( 98) that the first.

columns of C and D both vanish and that we could replace

our problem by one corresponding to a smaller value of r.)

Since D has rank r+l-p , when we use elementary row

operations to reduce D to upper echelon form we will end

up with exactly p zero rows. From ( 98) we see that each

row of D is some linear combination of the rows of C, and

since coCO we see that each of the r+l-p nonzero rows of

our upper echelon matrix must have at least one nonzero

element among its first r+l components. This being the

case we can rearrange the p zero rows so as to obtain the

matrix LPD which has zeros below the principle diagonal and

exactly p zeros (which lie in the p zero rows) along the
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principle diagonal. Thus we see that the first stage of the

elimination process can be carried out on any matrix D

having the factorization ( 98).

It is the second stage of the elimination process that

is dependent upon the auxiliary hypothesis that B has exactly

p zero columns. Indeed, if the (lower right) r,m - element

of LPD is nonzero, then by subtracting suitable multiples

of tnis row from the previous ones we can zero out the

upper most r elements of the last column. If this r,m -

element is zero, however, we can proceed if and only if the

whole last column of LPD is already filled with zeros. Since

LPD = (LPB) C

we see that the last column of LPD will vanish if and only

if the last column of C is in the null space of LPB and

thus in the null space of B, i.e., if and only if the last

column of B vanishes. Analogous considerations apply at

subsequent stages of the back elimination process.

NOTE. If the matrix D has full rank (as is often the

case in practice) then the square matrix B from ( 98) must

also have full rank r+l so that p=O and none of the columns

of B vanish. Theorem 6 then guarantees that D has the

factorization (100). Moreover, in this case S also has

full rank so that U,L,S are uniquely determined by D and

the pivoting strategy P.
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The following example has been constructed to show

that there are cases where the two stage elimination process

of Theorem 6 fails even when the roots Z 1 ,..., zn are

uniquely determined by d0 , dl.,..., d r Indeed, let

do(z) = l+2z+z2+2z = 2(z- 1/2)(z-i)(z+i)

d (z) = z 2 + z4 = (z-O)(z-O)(z-i)(zi)

d2 (z) = l+2z+2z 2+2z3+z4 = (z-l)(z-l)(z-i)(z+i)

so that d0 (z), d1 (z), d2 (z) have only the roots z = + i in

common. In this case

2 1 ,0 0 1 0 ]

and
12120]

D = BC = 00101

1 2 2 2 1

The matrices B,D both have rank 2 so that p =1, but no

column of B vanishes. Upon carrying out the forward

elimination process on D we find

011 > o 1 oi 2> 1 1 1m 01
0 0 1 0 1 0 0 1 0 1 0 0 0 0 0
1 2 22 1O 0 1 01 O0 0] 0 1

The back elimination fails, however, at, the point where

we try to annihilate the 2 in the second-to-last column

of the first row.
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8. CONCLUSIONS

Our approach to the problem of transient analysis,

i.e., the problem of extracting the system poles z1 ..., zn

from a sequence of samples y = (Yo' YI' Y2 '...) involves a

three stage process. We first assemble a data matrix by

applying certain sequence-to-sequence mappings to y

within the conceptual framework of Theorem 3 or Theorem 4.

We then compute a null vector for this data matrix by using

an eigenvalue analysis or a singular value decomposition

(with the former being less costly of computer storage and

the latter being somewhat better conditioned.) This null

vector then yields a characteristic function having z1 ,...,

zn as roots. Our scheme is a conceptually simple one which

admits significant new generalizations (such as those of

Examples 4 and 7 in Section 6), and it places the existing

algorithms within a common mathematical framework.

The sequence-to-sequence mappings which lie at the

heart of our analysis can be effected quite simply on a

digital computer. We have analyzed the noise suppressing

properties of such mappings and identified a fundamental

trade off between the size and shape of the region of

amplification and the signal-to-noise ratio improvement

which can be achieved. The analysis cleqrly shows why Jain's

method is successful in filtering noise from the low order

poles when high sampling rates are used (i.e., when the first
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few z's are close to i) and points the way to other pre-

processing schemes which will facilitate the computation

of the 'igher order poles. Further noise reduction could

be achieved by using an adaptive scheme which first estimates

the system poles and then carefully computes them using

preprocessing operators which are optimal with respect to

the expected pole pattern.

Finally, the problem of estimating the system order n

and assessing the accuracy of the computed poles Z,..., zn

can also be solved by using pole preserving mappings. In

the absence of noise the given sequence y and the auxiliary

sequences _O = Y0 (E)y, yl = y1 (E)y,..., Yr = Yr(E)y will all

have exactly the same poles z1 ,..., zn with n unknown. We

can perform separate computations of n and the z,'s using

each of the Yk's, or we can compute approximate null

vectors d l d. for data matrices constructed using

Yo' Yi,''', Yr and then extract n and the z 's from the

dk'S by using Henderson's method.

Many of these concepts have been tested by performing

the related computations on simple examples, and the results

have been most encouraging. A good deal more work will be

required, however, in order to perfect these ideas and to

incorporate them into efficient production codes.
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9. APPENDIX - THE DAMPED VIBRATING STRING

Problems in transient analysis arise when a physical

system reverberates in response to some initial excitation.

In principle, such a phenomenon can usually be modeled by

solving a certain boundary value problem (which characterizes

the system) subject to initial conditions which depend upon

the form of the initial stimulus. In practice, such models

can be analyzed in detail only in extremely simple situations

where there is unusual symmetry or low dimensionality. The

damped vibrating string provides us with a simple pnysical

phenomenon which nicely serves to illustrate the way a

problem in transient analysis arises and the inherent

difficulties associated with its solution.

Let u(x,t) give the (one dimensional) displacement

from the equilibrium position of the string at coordinate

x, 0 < x < L, at time t > 0. The motion of the string is

governed by the partial differential equation

(103) T xx(x,t) = P utt(x,t) + K ut(x,t), 0 < x < L, t > 0

.j where 7 is the tension of the string, p is the linear mass

density, and K is the damping coefficient. We shall assume

the endpoints of the string are fixed by the boundary

conditions

(104) u(O,t) = u(L,t) = 0, t > 0,
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and that some external stimulus has subjected the string to

the initial displacement and velocity

(105) u(x,O) = Uo(x), 0 < x < L

ut(x,O) = Vo(x), 0 < x < L

at time t=O. Upon separating variables we find that any

solution of (103) - (104) has the form

(106) x O {A e(-a+iwm+ )t e(--iWm)tsi(m/L)

m=l

2
where i = -1 and where

a =x/2p

m22T 2 1/2

m .2 - 4 2

are given in terms of the physical parameters T, p, x, L

which characterize the system. When (106) is subjected to

the initial conditions (105) we find that the complex

coefficients A, A 2 , ... are given by the integrals

A =(W L)- X-~u()v()3i~TxLd~=,,.m m IIm 0 dl 0 ~ 0 x~lmrxm,.
X=0

and thus depend on the choice of u0 (x), v0 (x).

Suppose now that

Y(t) = U(xot) , t > 0
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. .. .. .... Ij e cm - x ed

s thje resulting disj.,la Lrenl oI the strng at scmn Iixed

poihit xO , 0 < X0 < L. Using (106) we see that the transient

Y(t) can be written in the form

Y( t) I-- Z[sin (mnxo/L) ]e +~-[x sin (mnxo/L) ]e (-a-iwm)1L

m=1

or equivalently in the form

V=l

where

av =Amsin(mnxo/L) and sv= -a+iw if v=2m-1. m=l,2,...

a,., = Asin(mrx 0 /L) and s ==-i-m if v=2m. mre. .2......

The poles s. are more or less regularly spaced along the

vertical line Rez = -a in the left half plane, cf. Fig.1, and

they depend only on the physical parameters -,p.,,L of

the system. On the other band, the coefficients a v depend

on the point of observation x and the initial excitation

(i.e., uox) and vO(x) .) The problem of transient analysis

is then to recover the s 's from certain samples

Yk = Y(kT), k=0,1,2,...

of the signal Y(t).

The intrinsic difficulty of the problem is now apparent.

At best we can hope to find the first few of the infinitely
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many system poles, s. Moreover, if the initial stimulation

of the string fails to excite a given mode, if the point of

observation x0 happens to lie at a node of that mode, or

if we unwittingly choose too small a sampling rate, then

the mode will be weakly represented (if at all) in the

sequence of samples y = (yo, yl, Y2 ... ) and we will fail

to find the corresponding s . Nevertheless, in practice

we find that if we use a reasonable sampling rate then it

is possible to extract at least the first few s 's for

"almost" all choices of x0 , Uo(X), and v0 (x) . Analogous

considerations apply when we use transient analysis to

study more complex physical systems which cannot be

subjected to such a detailed analysis.
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s-plane

4z esT

z-plane z-plane z-plane

(a)Small T (b) Intermediate T (c) Large T

Figure 1. The transformation z=exp(sT) of (4) maps the s, s

from the left half s-plane onto the zV's within the unit

circle of the z-plane, with T > 0 being the sampling interval.

(a) When T is too small, the z s are tightly clustered
near z=l.

(b) When T is correctly chosen, the first few zVIs are

nicely separated.

(c) When T is too large, the zVs are burried deep within

the unit circle.
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Figure 2. Contour plots of thie SNR amplification factor

g(z) = I l+z+z 2 12 /3 for the case where y(z) = +z+z2

The region of amplification a is the set of points z

within the unit circle for wnich g(z) 2! 1.
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Ky cii
N=2 N=3 N=4 N=1O

gmax = 2  gmax = 3  t max= 4  gmax = l O

Figure 3. The region of amplification a. for the case where
Y(z)=l+z+ ... +ZN - 1 and N=2,3,4,10. As N increases, the
maximum SNR amplification g(l)=N also increases but G-

shrinks in size.

R=2 R=1.4 R=I.l R=l.01

gnmax = 3  gmax= 6 max 2 1  gmax= 201

Figure 4. The region of amplification for the case where

Y(z) = l+z/R + z2 /R2 + ... arid R=2, 1.4, 1.1, 1.01. As
R 1 1, the maximum SNR amplification Z(1)=(R+I)/(R-1)
increases but 0- shrinKs in size.
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Figure 5. The region of amplification for the case where

y(z) is given by (74) wIth p= 2 and with the four poles

(Ri, +9), i = 1,2 as shown. In this case QL has the
approximate form (71) and the corresponding preprocessing

scheme is well suited for pole patterns of the form shown

in Fig. I (b).
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